790 research outputs found

    Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

    Full text link
    We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.Comment: 53 pages, 29 figure

    Orbits in the H2O molecule

    Get PDF
    We study the forms of the orbits in a symmetric configuration of a realistic model of the H2O molecule with particular emphasis on the periodic orbits. We use an appropriate Poincar\'e surface of section (PSS) and study the distribution of the orbits on this PSS for various energies. We find both ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for small energies, but decreases abruptly beyond a critical energy. When the energy exceeds the escape energy there are still non-escaping orbits around stable periodic orbits. We study in detail the forms of the various periodic orbits, and their connections, by providing appropriate stability and bifurcation diagrams.Comment: 21 pages, 14 figures, accepted for publication in CHAO

    Non Asymptotic Properties of Transport and Mixing

    Full text link
    We study relative dispersion of passive scalar in non-ideal cases, i.e. in situations in which asymptotic techniques cannot be applied; typically when the characteristic length scale of the Eulerian velocity field is not much smaller than the domain size. Of course, in such a situation usual asymptotic quantities (the diffusion coefficients) do not give any relevant information about the transport mechanisms. On the other hand, we shall show that the Finite Size Lyapunov Exponent, originally introduced for the predictability problem, appears to be rather powerful in approaching the non-asymptotic transport properties. This technique is applied in a series of numerical experiments in simple flows with chaotic behaviors, in experimental data analysis of drifter and to study relative dispersion in fully developed turbulence.Comment: 19 RevTeX pages + 8 figures included, submitted on Chaos special issue on Transport and Mixin

    On chaotic behavior of gravitating stellar shells

    Full text link
    Motion of two gravitating spherical stellar shells around a massive central body is considered. Each shell consists of point particles with the same specific angular momenta and energies. In the case when one can neglect the influence of gravitation of one ("light") shell onto another ("heavy") shell ("restricted problem") the structure of the phase space is described. The scaling laws for the measure of the domain of chaotic motion and for the minimal energy of the light shell sufficient for its escape to infinity are obtained.Comment: e.g.: 12 pages, 8 figures, CHAOS 2005 Marc

    Good rotations

    Full text link
    Numerical integrations in celestial mechanics often involve the repeated computation of a rotation with a constant angle. A direct evaluation of these rotations yields a linear drift of the distance to the origin. This is due to roundoff in the representation of the sine s and cosine c of the angle theta. In a computer, one generally gets c^2 + s^2 1, resulting in a mapping that is slightly contracting or expanding. In the present paper we present a method to find pairs of representable real numbers s and c such that c^2 + s^2 is as close to 1 as possible. We show that this results in a drastic decrease of the systematic error, making it negligible compared to the random error of other operations. We also verify that this approach gives good results in a realistic celestial mechanics integration.Comment: 24 pages, 3 figure

    Relaxation of spherical systems with long-range interactions: a numerical investigation

    Full text link
    The process of relaxation of a system of particles interacting with long-range forces is relevant to many areas of Physics. For obvious reasons, in Stellar Dynamics much attention has been paid to the case of 1/r^2 force law. However, recently the interest in alternative gravities emerged, and significant differences with respect to Newtonian gravity have been found in relaxation phenomena. Here we begin to explore this matter further, by using a numerical model of spherical shells interacting with an 1/r^alpha force law obeying the superposition principle. We find that the virialization and phase-mixing times depend on the exponent alpha, with small values of alpha corresponding to longer relaxation times, similarly to what happens when comparing for N-body simulations in classical gravity and in Modified Newtonian Dynamics.Comment: 6 pages, 3 figures, accepted in the International Journal of Bifurcation and Chao

    Transport in Transitory, Three-Dimensional, Liouville Flows

    Full text link
    We derive an action-flux formula to compute the volumes of lobes quantifying transport between past- and future-invariant Lagrangian coherent structures of n-dimensional, transitory, globally Liouville flows. A transitory system is one that is nonautonomous only on a compact time interval. This method requires relatively little Lagrangian information about the codimension-one surfaces bounding the lobes, relying only on the generalized actions of loops on the lobe boundaries. These are easily computed since the vector fields are autonomous before and after the time-dependent transition. Two examples in three-dimensions are studied: a transitory ABC flow and a model of a microdroplet moving through a microfluidic channel mixer. In both cases the action-flux computations of transport are compared to those obtained using Monte Carlo methods.Comment: 30 pages, 16 figures, 1 table, submitted to SIAM J. Appl. Dyn. Sy

    Study of chaos in hamiltonian systems via convergent normal forms

    Full text link
    We use Moser's normal forms to study chaotic motion in two-degree hamiltonian systems near a saddle point. Besides being convergent, they provide a suitable description of the cylindrical topology of the chaotic flow in that vicinity. Both aspects combined allowed a precise computation of the homoclinic interaction of stable and unstable manifolds in the full phase space, rather than just the Poincar\'e section. The formalism was applied to the H\'enon-Heiles hamiltonian, producing strong evidence that the region of convergence of these normal forms extends over that originally established by Moser.Comment: 29 pages, REVTEX, 22 postscript figures on reques

    Entropy and Correlations in Lattice Gas Automata without Detailed Balance

    Full text link
    We consider lattice gas automata where the lack of semi-detailed balance results from node occupation redistribution ruled by distant configurations; such models with nonlocal interactions are interesting because they exhibit non-ideal gas properties and can undergo phase transitions. For this class of automata, mean-field theory provides a correct evaluation of properties such as compressibility and viscosity (away from the phase transition), despite the fact that no H-theorem strictly holds. We introduce the notion of locality - necessary to define quantities accessible to measurements - by treating the coupling between nonlocal bits as a perturbation. Then if we define operationally ``local'' states of the automaton - whether the system is in a homogeneous or in an inhomogeneous state - we can compute an estimator of the entropy and measure the local channel occupation correlations. These considerations are applied to a simple model with nonlocal interactions.Comment: 13 pages, LaTeX, 5 PostScript figures, uses psfig. Submitted to Int. J. Mod. Phys.

    Escaping from nonhyperbolic chaotic attractors

    Full text link
    We study the noise-induced escape process from chaotic attractors in nonhyperbolic systems. We provide a general mechanism of escape in the low noise limit, employing the theory of large fluctuations. Specifically, this is achieved by solving the variational equations of the auxiliary Hamiltonian system and by incorporating the initial conditions on the chaotic attractor unambiguously. Our results are exemplified with the H{\'e}non and the Ikeda map and can be implemented straightforwardly to experimental data.Comment: replaced with published versio
    • …
    corecore